Birkbeck 2020 : Slide 1

伊伊人成综合人网Each year, of late, I have been presenting some slides on the topic of Renewable Gas to students of the Climate Change and Energy module of the Birkbeck, University of London, Geography, Environment and Development Studies (GEDS) courses.

This year, I have very little time to prepare, so my usual primary-colour charts and diagrams will largely be absent, as I don’t have time to scout them out from elsewhere, or put them together myself.

I’m going to work on the principle that if you get enough people in the room, and you can describe a problem simply enough, the group normally have all the information and skills needed to solve it – you just need to draw the answers out of them.

Thus, I’m going for minimalism in terms of presentation, and relying on work groups to join the dots in the argument.

SLIDE 1

伊伊人成综合人网

Table : A Selection of Energies and Energy Supply Technologies

Electricity

Power plants
Power stations
Coal, Natural Gas, petroleum oil, nuclear fission
Renewable powerWind power, solar power, tidal power

Petroleum and other fossil fuels

Solids Petcoke (petroleum coke), coals
Oils Refined petroleum, including : petrol-gasoline,
diesel, jet fuels, marine oils
Gases Natural Gas, hydrogen (from Natural Gas)

Bioenergy

Biosolids Charcoal, wood, biochar
Bioliquids Biodiesel (Fatty Acid Methyl Esters), biotar
Biogases Biomethane, biohydrogen

Synthesised Renewable Fuels – Chemically Synthesised at Industrial Scale

Renewable Liquids Renewable Methanol
Renewable Dialkyl Ethers (DME, OME (PODE, DMMn), OMDEE…)
Renewable Gases Renewable Hydrogen, Renewable Methane

Work Group Questions

1.   What could cause intermittency in energy supply ?
   Intermittent = a sudden stoppage, explained or not explained.
 
 
2.   What causes variability in energy supply ?
   Variable = variation, modulation, change over time.
 
 
3.   How do energy types support each other ?
   What can act as “backup” to cover for a shortfall elsewhere ?

Renewable Fuels : Active Projects

A Review

Overview of polyoxymethylene dimethyl ether additive as an eco-friendly fuel for an internal combustion engine : Current application and environmental impacts

by Omar I. Awad, Xiao Ma, Mohammed Kamil, Obed M. Ali, Yue Ma and ShijinShuai

“Highlights
*   The co-application of PODEn and diesel reduces soot and particulate emissions.
*   Effects of blend ratio on PODEn/diesel blend fuel properties are summarized.
*   The NOx emission-soot correlation can be improved using PODEn-gasoline blends.
*   Euro 5 limits on nitrogen oxides (NOx) and particulate emission can be met using 10 and 20% PODE3–6.”

Abstract

“The combustion of conventional fuels within the transportation sector is a crucial driver of global warming and produces a number of harmful emissions. To decrease these adverse factors, the development of synthetic fuels produced from renewable energy sources via the catalytic conversion of carbon dioxide (CO2) and hydrogen (H2) has progressed significantly. Eco-friendly fuels have a reduced impact on the environment throughout their production and use cycles. In recent years, the use of polyoxymethylene dimethyl ethers (PODEn) as fuels has received an increasing amount of attention, owing to their engine performance and reduced environmental impact. The specific target of this paper is to systematically review the field of PODEn application-based additives as fuel for internal combustion engines. The background and highlights of current and future applications of PODEn are also discussed, and the challenges associated with the use of this additive are also briefly reviewed. A number of studies have shown that the use of fuel mixtures with up to 10% PODE3–4 can have a significant impact on the reduction of engine emissions. PODEn have been shown to reduce the emissions of soot, particulates, CO, and HC under different parameters and working conditions, although NOx and brake-specific fuel consumption (BSFC) emissions have been found to increase. Additionally, PODEn can be produced from natural gas or electric power via CO2 activation in a sustainable manner, which represents a significant benefit with regard to the use of oil-based products. Finally, fossil fuels blended with PODEn can be easily ignited and burned at stoichiometric conditions.”

A Project

Dimethyl Ether Synthesis from Renewables

“Gas Technology Institute (GTI) : Program : REFUEL : ARPA-E Award : $2,300,000
Location : Des Plaines, IL : Project Term : 06/01/2017 to 05/31/2020
Project Status : ACTIVE : Website: https://www.gti.energy/
Technical Categories : Transportation Fuels”

Critical Need

“Most liquid fuels used in transportation today are derived from petroleum and burned in internal combustion engines. These fuels are attractive because of their high energy density and current economics, but they remain partially reliant on imported petroleum and are highly carbon intensive. Domestically produced carbon-neutral liquid fuels (CNLFs), such as dimethyl ether (DME) that is a potential drop-in replacement for diesel engines, can address both of these challenges. Typical fuel production processes require huge capital investments and supporting infrastructure, including base-load power to run continuously. Technology enabling the small- and medium-scale synthesis of liquid fuels can move the production of the fuels closer to the consumer, and – if renewable sources are used – the fuels can be produced in a carbon neutral manner. However, significant technical challenges remain in either changing these processes for smaller scale use or developing alternative electrochemical processes for fuel development. New methods would also have to employ variable rates of production to match the intermittent generation of renewable sources. Improvements in these areas could dramatically reduce the energy and carbon intensity of liquid fuel production. By taking better advantage of intermittent renewable resources in low-population areas and transporting that energy as a liquid fuel to urban centers, we can more fully utilize domestically available resources.”

Project Innovation + Advantages

“Gas Technology Institute (GTI) will develop a process for producing dimethyl ether (DME) from renewable electricity, air, and water. DME is a clean-burning fuel that is easily transported as a liquid and can be used as a drop-in fuel in internal combustion engines or directly in DME fuel cells. Ultimately carbon dioxide (CO2) would be captured from sustainable sources, such as biogas production, and fed into a reactor with hydrogen generated from high temperature water splitting. The CO2 and hydrogen react on a bifunctional catalyst to form methanol and a subsequently DME. To improve conversion to DME, GTI will use a novel catalytic membrane reactor with a zeolite membrane. This reactor improves product yield by shifting thermodynamic equilibrium towards product formation and decreases catalyst deactivation and kinetic inhibition due to water formation. The final DME product is separated and the unreacted chemicals are recycled back to the catalytic reactor. Each component of the process is modular, compact, and requires no additional inputs aside from water, CO2, and electricity, while the entire system is designed from the ground up to be compatible with intermittent renewable energy sources.”

Potential Impact

“If successful, developments from REFUEL projects will enable energy generated from domestic, renewable resources to increase fuel diversity in the transportation sector in a cost-effective and efficient way.”

Security

“The U.S. transportation sector is heavily dependent on petroleum for its energy. Increasing the diversity of energy-dense liquid fuels would bolster energy security and help reduce energy imports.”

Environment

“Liquid fuels created using energy from renewable resources are carbon-neutral, helping reduce transportation sector emissions.”

Economy

“Fuel diversity reduces exposure to price volatility. By storing energy in hydrogen-rich liquid fuels instead of pure hydrogen in liquid or gaseous form, transportation costs can be greatly reduced, helping make CNLFs cost-competitive with traditional fuels.”

The Way You Make It

The way that OMEs and related fuel substitutes are made is very important as regards cost as well as atom economy.

In what follows, I have drawn from this research article :-

“Production of oxymethylene dimethyl ether (OME)-hydrocarbon fuel blends in a one-step synthesis/extraction procedure”, by Dorian Oestreich, Ludger Lautenschütz, Ulrich Arnold and J?rg Sauer, in Fuel, 214, 2018, p 39-44, DOI : http://dx.doi.org/10.1016/j.fuel.2017.10.116

In general, the authors comment that, “[…] an enormous interest in oligomeric oxymethylene dimethyl ethers (OMEs, CH3O-(CH2O)n-CH3, n=1–5) awakened and activities in this research field extremely increased in recent years. OMEs are related to DME dimethyl ethern-CH3, n=0) and exhibit an enormous potential for the reduction of soot and NOx emissions. Due to their high oxygen content and the absence of carbon-carbon bonds in the molecular structure, formation of pollutants is suppressed during combustion. Thus, strict exhaust emission standards can be met and exhaust gas treatment can be simplified. Properties of OMEs strongly depend on the chain length and OMEs with n=3–5 exhibit physicochemical as well as fuel properties similar to conventional diesel. Therefore, no serious changes of the fuel supply infrastructureand engines are necessary. Further advantages are their good miscibility with established fuels, low corrosivity as well as favorable health- and safety-related properties.”

These authors point out the predominance of methanol as a chemical feedstock, as written extensively about by George Olah – “Forget about the hydrogen economy. Methanol is the key to weaning the world off oil. George Olah tells us how to do it.”

They also point out that OMEs produced via renewable resources addresses climate change in addition to air pollution : “Regarding the production of OMEs and other fuel-related ethers, many strategies are based on methanol. Methanol is produced from synthesis gas, which is usually stemming from fossil resources, especially natural gas. Synthesis gas can also be obtained from renewable resources via different pretreatment technologies, depending on the feedstock type, and subsequent gasification. If renewable feedstocks are employed for OME synthesis, not only soot and NOx emissions can be reduced but also total CO2 emissions considering the entire system from feedstocks to combustion.”

But these wonderfuels don’t necessarily come easy – especially where routes include reagents that have a complicated synthesis of their own, such as trioxane (1,3,5 trioxane, a cyclic trimer of formadehyde) : “[…] a highly optimized and efficient production of OMEs is still a major challenge. Thus, availability is restricted at present and sufficient quantities of OMEs for intense testing can only be purchased from a few Chinese suppliers. However, capacities of Chinese plants are currently exceeding 40,000 tons per year and activities in the field of OMEs are rapidly developing there. Production of OMEs can be carried out employing different educts like methanol, DME, dimethoxymethane (OME 1) and formaldehyde sources like formalin, p-formaldehyde, or trioxane. Different homogeneous and heterogeneous acidic catalysts such as sulfuric acid, zeolites, ion exchange resins, metal-oxides or heteropoly acids are typically used.” (What do you know ? China is ahead of the curve again.)

There is a general divergence of choice in processing : “[…]A distinction can be drawn between OME synthesis in aqueous reaction systems (e.g. reaction of methanol with formalin or p-formaldehyde) and synthesis in anhydrous systems (e.g. reaction of dimethoxymethane with trioxane). In aqueous systems significant amounts of water, hemiformals and glycols are formed as by-products. In contrast, formation of such byproducts is largely suppressed in anhydrous systems. However, the use of aqueous systems, especially the reaction of methanol with formaldehyde, is highly desired since low-cost educts can be employed.”

The writers of this paper elucidate clearly the problems posed by dealing with controlling the chemical equilibrium in the production of OMEs and similar molecules; and then they introduce their contribution, “[…] a convenient one-step procedure for the production of OME-hydrocarbon blends is proposed. Selective extraction of OMEs from aqueous reaction solutions is described employing hydrocarbons such as n-dodecane, diesel and hydrogenated vegetable oil (HVO) as extraction agents. The corresponding oxymethylene diethyl ethers (OMDEEs) have also been synthesized and investigated.”

This use of straight chain hydrocarbons to “wash” or extract the OMEs is not completely described, neither the recycling of by-products – especially as one of the by-products of the aqueous process is trioxane, which could be used in a later anhydrous OME production process. However, I think I grasp enough of this to see that there could be a fairly strong atom economy – so high selectivity for the desired products, and not large percentages of rejected “waste” molecules that need to be ultimately disposed of. This is important because it shows that chemical synthesis of liquid fuels from base, simple molecules can be more efficient in terms of making atoms useful, compared to chemical processes using whole biological complexes – for example, the use of lignocellulose (lignin, cellulose and hemicellulose) in wood.

Alternative Fuels : OME

Synthesised alternative fuels are already a known known in Germany, judging by this research article into alternative fuel adoption preferences :-

“What fuels the adoption of alternative fuels ? Examining preferences of German car drivers for fuel innovations”, by Anika Linzenich, Katrin Arning, Dominik Bongartz, Alexander Mitsos and Martina Ziefle, in Applied Energy 249 (2019), p 222-236, DOI : https://dx.doi.org/10.1016/j.apenergy.2019.04.041

They write in their Abstact, “Some proposed synthetic fuels have favorable combustion properties compared to existing fuels, e.g., significant reductions in pollutant formation. However, penetration of such fuels requires a favorable social acceptance […] Among the five considered fuel attributes […] fuel costs had the highest decision impact for alternative fuel preferences, followed by fuel availability and usage requirements. Pollutant emissions had the lowest impact on alternative fuel choices. A market simulation of conventional diesel and alternative fuels (dimethyl ether (DME) and a blend of diesel with oxymethylene dimethyl ethers (OME)) revealed that currently a large majority of car drivers would prefer conventional fossil fuel options […]”

Clearly, some learning about alternative fuels needs to happen, particularly as there is an overarching plan, as the Linzenich et al. (2019) paper mentions, “The European Union aims at expanding the infrastructure for alternative (renewable) fuels in order to increase their market share to 10% and reduce the GHG emissions caused by transport by 60% till 2050. This implies the need for novel, alternative fuels with drastically lower GHG emissions than fossil fuels. Simultaneously, it is necessary to reduce pollutant emissions, in particular NOx and soot. Biofuels made from biomass, electricity-based fuels (e-fuels, produced from CO2, water, and renewable electricity), as well as the combination of these approaches (termed biohybrid fuels), have the potential to reduce GHG and pollutant emissions and can overcome the range issues of electric vehicles (EV) in long-distance transport. For example, the alternative fuels methanol and methane can each reduce NOx emissions by 30–50% and total hydrocarbon emissions by 15–30% compared to gasoline. Also, some alternative fuels for compression ignition engines can drastically reduce particulate matter (PM) emissions, e.g., in case of dimethyl ether (DME) by more than 95% compared to diesel fuel. Some of these alternative fuels can even be used in conventional vehicles, requiring no retrofit of the infrastructure, car, or engines.”

Beside dimethyl ether (DME) and its homologues, the (poly) oxymethylene dimethyl ethers (OME) series is also in the frame, and techniques for synthesising them are being developed, for example, “Conceptual design of a novel process for the production of
poly(oxymethylene) dimethyl ethers from formaldehyde and methanol”, by Niklas Schmitz, Eckhard Str?fer, Jakob Burger and Hans Hasse, in Industrial & Engineering Chemistry Research, 2017, 56, 40, p 11519-11530, DOI : https://dx.doi.org/10.1021/acs.iecr.7b02314

The researchers mention that OMEs have a variety of purposes, besides OMEs with between 3 to 5 carbon atoms in each molecule being touted as alternative fuels, “Poly(oxymethylene) dimethyl ethers (OME) are oligomers of the general chemical structure H3C-O-(CH2O)n-CH3 with n >= 2. OME are alternative fuels derived from the C1-value-added [methanol, methane foundation or base chemical] chain. OME reduce the soot and indirectly also the NOx formation during the combustion process in engines. Thus, OME have the potential to significantly reduce engine emissions, which recently undergo a heavy public debate. In addition, OME are also considered as physical solvents for the absorption of CO2 from natural gas, as safe fuels for direct oxidation fuel cells, and as green solvents for the chemical industry.”

Because OMEs can be made from syngas, with supporting chemicals, “Generally, for the synthesis of OME, a source of formaldehyde (e.g. aqueous/methanolic formaldehyde solution, paraformaldehyde, trioxane) and a source of CH3-end groups (e.g. methanol, dimethyl ether, methylal) are required”, and syngas can be made from anything that has carbon and hydrogen in it, this makes OMEs a good chemistry set for the energy transition. Today, OMEs might be made from Natural Gas, but in a few years time, OMEs can be made in a carbon-neutral ways from biomass and the carbon dioxide in biogas (amongst other renewable sources of carbon and hydrogen).

For progress in althenative fuels, going down the DME/OME route is suitable for a number of reasons. “Oxymethylene ether (OME1) as a synthetic low-emission fuel for DI diesel engines”, by Markus Münz, Alexander Feiling, Christian Beidl, Martin H?rtl, Dominik Pélerin and Georg Wachtmeister, in, Liebl J., Beidl C. (eds), “Internationaler Motorenkongress 2016. Proceedings”. Springer Vieweg, Wiesbaden, https://dx.doi.org/10.1007/978-3-658-12918-7_41, reads, “Synthetic CO2-neutral fuels with oxygen content are referred to as oxygenates and show a promising way to achieve the set objectives. The combustion of oxygenates is soot-free, thus avoiding the NO x /particulate trade-off. The post-oxidation is improved by the presence of oxygen directly at the fuel. In addition, some oxygenates have no direct carbon-carbon bonds (so called C1-fuels), which prevents the formation of soot.”

People Like Me

Just in passing, during a general internet browse, I find that Bosch take synthetic fuels seriously. People like me.

“Synthetic fuels are made solely with the help of renewable energy. In a first stage, hydrogen is produced from water. Carbon is added to this to produce a liquid fuel. This carbon can be recycled from industrial processes or even captured from the air using filters. Combining CO2 and H2 then results in the synthetic fuel, which can be gasoline, diesel, gas, or even kerosene.” This is not new gizmodery, however. Synfuels have a long history : see here, here, here and here.

And they mention that the Germany Ministry for Economic Affairs and Energy has been working in this area. Another search term in the internet browser later, I find companies doing work on turning wood into fuel, and capturing carbon dioxide to make methanol. But I know there’s more. So, after a little more digging, I find the bmwi 2019 Federal Government Report on Energy Research.

And what’s this ? Carbon2Chem – “CO2 reduction via cross-industrial cooperation between the steel, chemical and energy sectors”. And the section on projects and companies involved, for L6, “Oxymethyl ether: BASF SE, Volkswagen AG, Linde AG, FhG-UMSICHT, Karlsruhe Institute of Technology (KIT) – Institute of Catalysis Research and Technology, thyssen-krupp AG”.

Volkswagen ? I mean, I can understand BASF and Linde being heavily involved at this stage, being chemical engineering majors, but Volkswagen ? A motor vehicle manufacturer ? Already ? I would have thought the carmakers would come along to the party a bit later. Although, actually, thinking about it, I have heard of some other automobile companies doing things in the gas sphere.

And KIT, Karlsruhe Institute of Technology. Here’s their general piece about the bioliq plant.

“Modern combustion engines become increasingly economical and clean. Engine developers, however, are now facing the technical conflict of whether fuel consumption or exhaust gas emission is to be further reduced. This Gordian knot might be cut by chemists’ and engineers’ further development of sophisticated fuels that help optimize combustion in the engine. […] A promising concept for diesel fuels is the use of oxymethylene ethers […]”

It goes on, “[…] Oxymethylene ethers (OME) are synthetic compounds of carbon, oxygen, and hydrogen (CH3O(CH2O)nCH3). Due to their high oxygen concentration, pollutant formation is suppressed in the combustion stage already. As diesel fuels, they reduce the emission of carbon black [BC] and nitrogen oxides [NOx]”. This sounds like a very optimistic route for development.

However, there’s still the usual catch of new tech : the economics. “[…] Still, economically efficient production of OME on the technical scale represents a challenge. The OME project will therefore focus on new and efficient processes for the production of the chemical product OME.”

And clearly, they will need to be produced from renewable resources, “[…] OME might be produced from renewable resources, as is shown by the bioliq project of KIT. In this way, these substances would not only contribute to reducing pollutants, but also to decreasing carbon dioxide emission of traffic. The carbon/oxygen/hydrogen ratio of OME is very similar to that of biomass. Production with a high energy and atom efficiency is possible.”

As of now, “[…] Little is known about the effects of OME during engine combustion and other aspects of the use in vehicles. Comprehensive studies of engine tests will focus on these aspects of application and contribute to revealing the potentials of enhancing efficiency of OME use. These studies are to provide detailed insight into the relationships between the chemical OME structure and combustion properties. The objective is to demonstrate a highly simplified exhaust gas treatment process without particulate filters and catalytic treatment. […]”

And this is a very important point : the way forward for diesel engines in road vehicles implies the use of several different kinds of filtration, additives, catalytic conversion and other gas exhaust treatment – including recycling. Yet even with all this extra kit in a diesel vehicle, there will be RWDC – real world driving conditions that defeat all this added expense and weight.

We have to face the facts : dino diesel is dangerous dirt, and cleaning up after its combustion requires complex chemistry. Any alternatives could be very useful in reducing the weight and cost of vehicles, including removing the need for rare earth elements in catalysts.

Nucleation & Agglomeration 2

Trying to displace refined petroleum-sourced vehicle fuels with renewable alternatives is relatively straight forward, although there is some tinkering necessary to meet industry technical standards.

Jumping these hurdles could be seen as minor compared to measures that might be necessary to reduce the overall burden of air pollution from burning liquid biofuels and liquid Renewable Fuels in internal combustion engines (ICE).

Some emissions are suppressed or absent, for example, the levels of sulfur and sulfur compounds in the raw biomass products used to make biodiesel are significantly less than in fossil fuels. This should mean that the exhausts of burning biodiesel will cause less sulfate and less sulfur dioxide emissions to the atmosphere than burning fossil diesel.

There are hundreds research projects in this area. Since I’m not an expert in this field, I don’t know which research authors are best to reference, but I’m going pick a few at random, and work from there.

Let’s take, “Size distributions, PAHs and inorganic ions of exhaust particles from a heavy duty diesel engine using B20 biodiesel with different exhaust aftertreatments”, by Pi-qiang Tan, Yi-mei Zhong, Zhi-yuan Hu and Di-ming Lou, in Energy, Volume 141, 15 December 2017, Pages 898-906, DOI : https://doi.org/10.1016/j.energy.2017.09.122.

“Compared with the engine without exhaust aftertreatments, DOC [diesel oxidation catalyst] decreased nucleation mode particle number by 19.83%, while accumulation mode particles exhibited slight changes.”

So, to revise, “nucleation mode” refers to the process whereby individual atoms, ions or molecules group/stick/crystallise together to form a “nucleus”, the core of a particle; whilst “accumulation mode” refers to particles clumping together into “agglomerates”.

Tan et al. (2017) go on, “Compared with diesel fuel, many studies show that biodiesel can reduce particle mass, hydrocarbons (HCs), and carbon monoxide (CO) emissions, but nitrogen oxides (NOx) are slightly increased.”

Well, that seems like biodiesel offers several huge bonuses in curbing emissions; however, this is not across the board. The paper reads, “Tan et al. [2014] found that biodiesel fuel led to an increase in particle number concentration, especially small size particles, when compared with diesel fuel. Zhang [2011] drew the same conclusions. The particles, especially the small size ones, stay suspended in the atmosphere for a long time, and thus have a higher probability of being inhaled and consequently being deposited deep in the alveolar region of the human lung […] Nitrate, sulfate, and ammonium, in this order, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. […] Biodiesel decreases the total PAH emission. However, it also increases the fraction of fine and ultrafine particles compared with diesel.”

So, biodiesel substitution for dinodiesel is not an unmitigated success.

And the situation changes with engine load. For a reference, I chose “Comparison of particle emissions from an engine operating on biodiesel and petroleum diesel”, by Jie Zhang, Kebin He, Xiaoyan Shi and Yu Zhao, in Fuel 90, 2011, 2089-2097, doi : 10.1016/j.fuel.2011.01.039 : they write, “The biodiesels were found to produce 19–37% less and 23–133% more PM 2.5 compared to the petroleum diesel at higher and lower engine loads respectively.” PM, of course, is particulate matter, and PM 2.5 is particulate matter of a diameter/size of 2.5 microns (micrometres, or millionths of a metre) or smaller.

Why are we building gas ships ?

Calum Watson at BBC Scotland rightly asks “Why are we building gas-powered ships ?

Two “problem-hit” “green” ferries are three years late, designed to be fuelled by LNG – Liquefied Natural Gas.

Of course, Natural Gas has a shelf life, a sell-by date, a leave-it-in-the-ground date. Because it’s a fossil fuel, and at some point, even though we might use Natural Gas as a “bridge fuel” to the fully renewable future, as some point we will need to stop pumping it up and burning it. The climate demands it.

So, why are we building gas-fuelled ships, then ? Well, that’s because Renewable Gas is a-coming in. For now, Natural Gas combustion produces around half the carbon dioxide per unit of useful end energy than coal or the thickest petroleum-sourced “bunker fuel” marine oils.

And in addition, as Calum Watson at BBC Scotland points out, burning Natural Gas produces far less air pollution than burning the treacle tar that comes out of the bottom of the barrel and the bottom of the petrorefinery fractional distillation columns – almost too heavy to vaporise.

The model of shipping gas halfway round the globe, compressed and chilled as LNG, in a network of efficient trading routes, is something that can put cheap associated Natural Gas to good use in energy markets – associated with petroleum oil, that is – co-produced, or by-produced when the oils and the condensates are pumped up.

The same system can in the future be used to trade Renewable Gas – Renewable Methane, synthesised from Renewable Hydrogen and Renewable Carbon.

There’s no need to abandon gas-fuelled ships on climate change action grounds, when Renewable Gas is going to displace Natural Gas.

Calum Watson at BBC Scotland asks if hydrogen could be the shipping fuel of the future, but he rightly points out that if hydrogen were to be shipped in the same way as Natural Gas is now in the form of a liquid, the cryogenic demands on liquefying hydrogen would be extreme.

He discusses electric drive ships, and that’s going to be great for short hops – but for the long haul, shipping will still need energy denser material fuels. The question in my mind is if Renewable Methane as LRG – Liquefied Renewable Gas is the best option – as it is possible to synthesise fuels that are liquid at room temperature, starting with biomass and Renewable Hydrogen.

Combusting liquid Renewable Fuels made through synthesis might be shown to have the same kinds of air pollution implications as fossil marine fuels : perhaps Renewable Gas will work out to be the best choice for new ocean-going vessels. It won’t be the ammonia-made-from-hydrogen mentioned in the article – there are too many issues with using this in bulk. Renewable Gas, however, where it is Renewable Methane, will be almost identical to Natural Gas, which has a very high methane content.

Calum Watson at BBC Scotland ponders that, “it looks like shipyards will be building a lot more gas-powered ships – whether that will satisfy climate change concerns is another matter.” This is a valid issue when considering hydrogen made from Natural Gas – which is another dead end. But if we use, as he says, “The cleanest way of obtaining the gas is by splitting water molecules using electrolysis, a process which requires electricity”, and take Renewable Electricity as our power for this, then the product will automatically be climate sound.

Nucleation & Agglomeration

I ask, “What makes burning diesel fuel so polluting ?” And, “Are there any ways to prevent this ?”

And so I enter a whole new world of acronyms, three-letter and otherwise.

Vapour, vaporised, and vapour-borne molecules and elemental atoms and ions make their way out of the diesel vehicle exhaust, subject to three key processes : condensation, nucleation and agglomeration (or accumulation).

Those particles that were solid post-combustion form potential nucleation and condensation surfaces.

Of the rest, whether they stay vaporised depends on their boiling points.

Carmageddon 5

So, today started, interestingly enough, with a no-questions-permitted press conference, during which the Prime Minister of the United Kingdom launched the COP26 conference of the UNFCCC, still to be held in Glasgow, Scotland, although without the original leader, and announced that diesel and petrol car sales would be banned from the year 2035.

It sounds like a bold announcement, and I’m sure he meant what he said, yet there are some problems with achieving this.

First of all, the relationships between the government, the vehicle manufacturing businesses, the fuel producers and the fuel sales businesses are very close and interdependent – it will take a mighty shove to shift this interconnected group off its perch.

The ban will be subject to “consultation”, and you can bet that some consultees will object, and lobby against the ban. They will probably be successful. This is because of the outright dominance of diesel and petrol-gasoline vehicles, which is very unlikely to have been unseated by 2035.

The sales of electric vehicles are still negligible compared to the number of diesel and petrol vehicle sales, and the market circulation of pre-existing diesel and petrol vehicles.

Because there are so many diesel and petrol-gasoline vehicles in the national “fleet”, and because their life expectancy is increasing, and because the number of fossil fuel-burning vehicle sales is still increasing, the accumulated number of fossil fuel-burning vehicles in 2034 is going to be huger than ever.

Because nobody will be able to justify stranding this asset, everyone will keep on running their fossil fuel drive vehicles, and others will keep on providing fossil fuels for them.

It seems now to be highly unlikely that the manufacture and sales of electric vehicles will be able to ramp up to match the levels of the fossil fuel-drive vehicle sales by 2035, so everybody will be incentivised to keep running their fossil fuel vehicles.

Because the fossil fuel drive fleet of vehicles will be so large in 2034, there will be enormous pressure to keep producing them – the fuel provision systems will still be in place, and the vehicle manufacturers will still be able to produce them. Businesses will be able to successfully argue that they cannot just stop servicing market need.

That all being said, this announcement opens up a great opportunity for the fossil oil and gas companies to jump in with an offer of Renewable Fuels.

Why ban diesel and petrol vehicles, when instead, you can just green up the fuels ?

Carmageddon 4

Combustion of fossil fuels mostly gives byproducts of carbon dioxide and water vapour. However there are also some other compounds created along with the marriage of carbon with oxygen, and some of these are highly dangerous, either to personal or planetary health.

Bringing alternative vehicle fuels to the markets, oil and gas companies who are transition ing away from petroleum to renewable fuels will need to make sure these new products do not aggravate air pollution by adding to it, at the very least; and at best, prevent air pollution.

There are some bolt-on technologies that can be applied for diesel vehicles in particular, but if alternative fuels remove the problem exhausts from burning diesel fuels, then the problems will be solved without perhaps costly car modifications.

To begin outlining some of the research, I must outline the worst offenders in terms of air pollution – both from burning diesel fuels and petrol-gasoline.


Air Pollution from Vehicle Fuel Combustion

PollutantFormulaCauseGlobal Warming Potential (over 100 years)
Carbon dioxideCO2Combustion leading to oxidation of the fuel’s carbon by air1
Carbon monoxideCOIncomplete combustion of the fuel’s carbon by insufficient air
Nitrogen oxides, or NOxNO, NO2Combustion of fossil fuels in normal air
Nitrous oxideN2OCombustion of fossil fuels in normal air265
VOCs (Volatile Organic Compounds)
including unburned hydrocarbons, such as methane
Combustion of fossil fuelsMethane : between 62 and 96
PAHs (Polyaromatic Hydrocarbons)Combustion of fossil fuels
PM (Particulate Matter)
< 10 microns, < 2.5 microns, < 1 micron
A core of carbon (C)Combustion of Fossil Fuels
Black Carbon (a fraction of Particulate Matter)C
Sulfur DioxideSO2Combustion of Fossil Fuels
Trace metals and their ionsincluding possibly V, Ni, Fe, Zn, Mo, Pb, Al, Cr, Cu, P, Si, Ca, depending on original crude oilCombustion of Fossil Fuels

#ExxonKnew : Deeply Flawed Methodology

I’m scrolling through Twitter, and a Promoted advertisement pops up in my timeline.

“Don’t be misled by news reports”, it reads, “WATCH to learn the real story behind #ExxonKnew”.

I double-checked. The account was @exxonmobil, and there was a big blue tick there, so it had to be valid. ExxonMobil was running an exposé.

I clicked the link, fascinated to learn what ExxonMobil had to say regarding the allegations made against them, that they had allegedly known about climate change decades ago, and yet had allegedly carried on with fossil fuel exploitation regardless, whilst allegedly keeping the facts from everyone.

I watched the little video, complete with clinky xylophone and tinkly pizzicato violin music, and it said,

‘GET THE FACTS about the manufactured allegations behind #ExxonKnew’

‘#ExxonKnew is a political campaign that aims to advance the special interests of environmental activists, plaintiff’s attorneys and politicians.’

‘The campaign is backed by wealthy funders and plaintiff’s attorneys who have…’

‘Placed inaccurate, “pay-for-play” news stories…’

‘Coordinated with sympathetic politicians to launch baseless investigations into ExxonMobil…’

‘And manufactured academic reports with deeply flawed methodology…’

It was at this point that I smelled a highly-whiskered public relations rodent.

For starters, there’s no good being scornful about their accusers being involved in politics. After all, ExxonMobil themselves seem to play quite a lot of politics. Their annual lobbying budget, as of 2019, was apparently $41 million.

As for the “special interests”, well, that stands to reason. Quite a lot of people have a special interest in curbing climate change these days, some of them even have businesses in the sector. ExxonMobil is being a little hypocritical, perhaps, as they seem to be one big “special interest” themselves.

As for the #ExxonKnew campaign having “wealthy funders”, ExxonMobil’s campaign against #ExxonKnew is probably being backed by the enormous capital of ExxonMobil.

And as for the accusation of “deeply flawed methodology”, well, that’s surely just opinion from a major oil and gas company ?

The video carried on :-

“To date the campaign has failed to achieve any substantive results or advance constructive dialogue on climate change.”

“ExxonMobil on Climate : THE FACTS”

“ExxonMobil is committed to reducing the risks posed by climate change.”

“We support the 2015 Paris Climate Agreement.”

“Through our membership in the Climate Leader Council, we are working with the top business, environmental and economic minds to advocate for a revenue-neutral carbon tax.”

“ExxonMobil has supported such a tax for over a decade.”

“We have partnered with 13 of the world’s largest oil and gas producers as part of the Oil and Gas Climate Initiative to pursue lower-emission technologies.”

“Since 2000, we have invested more than $9 billion to develop lower-emissions energy solutions, including carbon capture and storage, cogeneration, methane emissions reduction and algae-based biofuels.”

“And in agreement with the U.S. National Labs we are investing up to $100 million to research and advance lower-emissions technologies.”

Whoa there ! Such a lot of money ! But wait, how does this compare to annual investment in other things ? And how does ExxonMobil compare to other oil and gas companies ?

The video captions continue :-

“We have forged partnerships with more than 80 universities to promote and share emerging scientific research.”

Hang on a minute ! Partnerships with universities ? Producing academic research ? Doesn’t that stand the risk of results being just a little bit biased ?

“And support cost-effective federal regulations of methane emissions along with setting voluntary reduction efforts.”

“ExxonMobil”

“For more information visit : www.exxonmobil.com/getthefacts”

It seems ExxonMobil had the facts about global warming and the contribution from fossil fuel combustion around about 50 years ago. If so, they should have acted sooner to effect a low carbon transition, and they should now be investing much, much more in the solutions.

Towards the end of 2018, in their report, “Beyond the Cycle : Which oil and gas companies are ready for the low-carbon transition”, the Carbon Disclosure Project found that, as reported by Environmental Leader’s Alyssa Danigelis, “This year the global oil and gas industry is only investing 1.3% of total capital expenditure in low carbon assets […] European oil and gas majors were slightly ahead at 7%, but overall this represents a drop in the bucket compared to the industry’s greenhouse gas emissions.”

It seems ExxonMobil are not spending nearly enough of their capital on low emissions technologies.

Their approach, to push for a carbon tax, risks shoving the issue of climate action into the political long grass, where change will take decades to coalesce. This is almost certainly a delaying tactic on their part. If they were serious, surely they would be taking corporate action right now, instead of making climate action somebody else’s fiscal or financial responsibility ?

ExxonMobil’s investment in carbon capture is minuscule compared to their annual capital expenditure on oil and gas production. And their carbon capture and storage uses carbon dioxide to help pump more petroleum oil. How do they dare to proudly show it off ?

Their involvement with universities clearly advances their own special interests; their paid-for research is not solely concerned with low emissions technologies.

Their contribution to all the international and national energy fora and colloquia could be said to be all about them, and lobbying for their own corporate survival.

What they say just doesn’t wash, in my opinion.

ExxonMobil’s rebuttal, to use their own accusation, could be said to be one giant “deeply flawed methodology”.

Air Liquide : Blue Hydrogen : Green Hydrogen

Hydrogen is once again in the news, but it’s not renewable. And in addition, its uses are not green, either.

Air Liquide, operating as ALAR – Air Liquide Arabia – has announced the start of commercial supplies of hydrogen, produced at YASREF, via a pipeline network within the Kingdom of Saudi Arabia.

A Reuters article, clearly based on an Air Liquide press release, reads, “Pressure has mounted on the world’s biggest fossil fuel producers to reduce their carbon emissions as concern mounts among policy-makers, investors and the general public about their impact on global warming. Many in industry are turning to hydrogen gas, which can be used to fuel vehicles and as a means to store green energy, as part of the solution.”

This all sounds great, but there are several things wrong with this picture.

The first catch is that the hydrogen in this case is not going to be used to fuel vehicles, or store green energy. As it says in the article, “Air Liquide Arabia (ALAR) on Tuesday began pumping hydrogen […] and will supply a Saudi Aramco refinery as the kingdom seeks to shift towards cleaner fuel. […] The Saudi Aramco Mobil Refinery (SAMREF), a joint venture between oil giant Saudi Aramco and a subsidiary of U.S. oil major ExxonMobil, will be the first company to use the Yanbu hydrogen grid […]”

So, the hydrogen here is going to be used to assist in the processing and refining of crude petroleum oil : such processes as hydrodesulfurisation, hydrotreating, hydrocracking.

The second nick is that the hydrogen is being made from Natural Gas, not renewable electricity with water. The Yanbu plant is a giant Steam Methane Reforming operation : “Large-scale hydrogen production unit in Yanbu : One of our many achievements in the region is the successful commissioning of a large-scale Steam Methane Reformer unit for the YASREF refinery (in Yanbu, Saudi Arabia), with a total hydrogen production capacity of 340,000 Nm3/hour. This is the first time in the Middle East that the hydrogen production for such a large refinery has been outsourced to a third party.”

Large gas projects, where the economics make sense, are normally gargantuan, leviathan, plants, covering large areas of land, and requiring high volumes of materials. This means that even plant that produce 100 times less than the Air Liquide operation at YASREF are highly centralised and capital-intensive.

Hydrogen plants are therefore a major capital commitment, and building these gigantic SMRs means that there is a strong lock-in to Natural Gas, a fossil fuel.

Air Liquide does say that they have a commitment to going green, however :-

“In practical terms, Air Liquide has made a commitment to produce at least 50% of the hydrogen necessary for these applications through carbon-free processes by 2020 by combining :
*   Biogas reforming
*   The use of renewable energies, through water electrolysis
*   The use of technologies for the capture and upgrading of carbon emitted during the process of producing hydrogen from natural gas”

2020. That’s now. I wonder how Air Liquide are doing with their capture and “upgrading” of carbon.

I haven’t seen any actual numbers yet, and there doesn’t appear to be a line in their annual accounts about this budget line, but warm words are being reported about cost reduction. Here’s the Hydrogen Council report “Path to hydrogen competitiveness : A cost perspective : 20 January 2020”.

Renewable Hydrogen will get ridiculously cheap, especially as renewable electricity becomes outrageously over-supplied.

I hope Air Liquide won’t come to rue the day they agreed to build the Yanbu project.

Carmageddon 3

Europe’s cars are getting older. Older on average, that is. Lasting longer. Perhaps being used a little less wearingly, so aging sparingly.

Yet, the numbers of cars produced and registered each year continues to climb inexorably.

Despite there being wall-to-wall advertising for electric vehicles and hybrid vehicles, the actual numbers of sales remains minuscule.

Let’s just take the figures for one country, the United Kingdom, still, until 11pm GMT this evening, a member of the European Union.


ACEA Vehicles in Use – Europe 2019 : United Kingdom : %share : 2018

PetrolDieselHybrid
electric
Battery
electric
Plug-in
hybrid
LPG +
Natural gas
Other +
Unknown
Passenger Cars58.5%39.7%1.4%0.2%0.2%0.0%0.0%
Electric (Battery electric + Plug-in hybrid)
Light Commercial Vehicles (vans)3.6%96.2%0.0%0.1%0.1%0.0%
Medium and Heavy Commercial Vehicles (trucks/lorries)0.6%99.3%0.0%0.0%0.4%0.2%
Buses0.5%98.8%0.0%0.4%0.3%0.0%

Clearly, liquid vehicle fuels will be with us for some time yet to come. The imperative then becomes, how to reduce their net carbon dioxide emissions ? Planting trees will probably not measure up to the task.

Carmageddon : 2

One of the ways to improve the combustion of fuels, to make them cleaner-burning, is to put oxygen at the heart of the engine – in the molecules of the fuels. Oxygenates, principally alcohols, are either already being used, or are proposed for wider fuel inclusion.

None of this is particularly novel, as for example, ethyl alcohol (commonly known as ethanol), has been in use as a fuel or fuel additive since the first cars were built. Methanol has been in common use for competition vehicles, and BP has investigated butanol in a product known as Butamax.

Although simplest is often the best, in this case, other kinds of molecules might be better as substitution for petrol-gasoline and diesel : synthesised ethers and esters are being researched widely.

Coming at air pollution from another angle is the development of biodiesel – made from the long chain hydrocarbons in plant biomass. Again, not a new class of fuels, as plant oils were in at the start of the development of diesel engines, for example.

The most important thing about replacement fuels is that they need to perform well under a range of conditions, and research needs to include the trade-offs between different kinds of pollutants.

Carmageddon : Part A

Cars Make Cities Impossible

A simple consideration of the total number and type of car sales each year, compared to the total number of vehicles on the road, indicates that the average age of a car is high, and that there are vastly more internal combustion engine (ICE) vehicles than electric models, and that therefore there will continue to be a need for liquid vehicle fuels for several decades to come. Turnover in the global fleet is not high, and anticipated conversions of vehicles to electric drive are not expected to be significant, or at least, not early on, so the high volume production of diesel-like and gasoline-petrol-like fuels remains a necessity.

There is the question of whether fuel refining can be sustained over this period, which is likely to be a time of upheaval in terms of technology. But the key question is whether the continued use of ICE vehicles will make life in cities progressively impossible. Will the continued use of internal combustion engines render cities unliveable, owing to issues of climate change and air pollution ?

Whilst it might be possible to reduce the amount of net carbon dioxide being emitted from motorised vehicles by substituting increasing levels of biomass-derived feedstock, whether in final blending, or as drop-in to various refinery processes, will this still contribute to falling exhaust toxins mandated by increasingly stringent air quality regulations ?

It is perhaps instructive to consider what has happened in the area of marine fuels. As recently reported to the IMO International Maritime Organization, VLSFO, Very Low Sulfur Fuel Oil, or other low-sulfur grades, developed to replace higher sulfur fuel oils for marine vessels, may be responsible for an increase in air pollution emissions of Black Carbon. The reason for this is that the processes of reformulating and blending that reduce sulfur from the final products potentially include a higher level of aromatic hydrocarbon compounds. It has been known for some time that this has the potential to lead to higher carbon particulate emissions (see here, for example).

Marine fuel oil is largely composed of gunk from the bottom of the barrel of crude petroleum oil – residues and the heaviest distillates. This fraction of the oils is where the most complex hydrocarbons generally lurk. The aim of the refiner is to reduce waste by blending otherwise unusable fractions of oils into final fuel products. As the higher sulfur streams have been barred, highly aromatised substitute streams have been brought in. This is one step forward, two steps back.

If refiners were to try to displace some of their fossil fuel feedstocks with biomass-derived feedstocks, this may introduce certain combustion inefficiencies, and lead to a rebalancing of problem exhaust species, but not reduce them.

Adding biomass-derived feedstocks at various drop-in points in refinery can lead to additional processing requirements, such as isomerisation and alkylation, to reestablish the regulated specification of the final fuels, leading to inherent inefficiency, and also to the presence of esoteric hydrocarbons (unnatural to nature, or unknown in such high quantities) in both fuel and exhaust.

Whilst biodiesel may contribute towards lubricating vehicles, obviating the need for engine improver detergents, does it lead to higher unwanted exhaust emissions ?

Also, although fuels are regulated at refinery dispatch, many companies are advising customers to add their own fuel improvers – sold as engine protection. How does this alter the profile of emissions ? And how many metals are present – which will inevitably end up in the lungs of citizens ? And how much sulfur in the form of sulfonates, which will end up as sulfur dioxide in the air ?

Oxygenates added to fuels certainly improve the efficiency of combustion, but do they lead to higher unwanted emissions – or do they rebalance exhausts to be more dangerous ?

BP : Breaking Paradigms

As you walk into BP World, be prepared to have an ideological transplant. Be prepared to have hopes dashed and disappointments bittered. Be prepared, above all, to have unrecognisable narratives thrust upon you, with all the reinforcements that money can lobby for.

This is my initial reaction upon reading the words of Bob Dudley, outgoing Chief Executive Officer of BP, reported yesterday by Bloomberg, and carried on the wires elsewhere, for example :-

https://www.msn.com/en-us/finance/markets/outgoing-bp-ceo-warns-of-moving-too-fast-on-climate-change/ar-BBZom91
https://www.energyvoice.com/otherenergy/220661/outgoing-bp-ceo-warns-of-moving-too-fast-on-climate-change/
https://www.rigzone.com/news/wire/bps_dudley_warns_of_moving_too_fast_on_climate_change-28-jan-2020-160921-article/

In the article, headlined, “Outgoing BP CEO Warns of Moving Too Fast on Climate Change”, Bob Dudley “warned Big Oil of moving too fast on investing in new technologies to counter climate change, because their failure could lead to financial ruin. ‘If you go too fast and you don’t get it right you can drive yourself out of business,’ Dudley said in a Columbia Energy Exchange podcast with Professor Jason Bordoff.”

I suppose that sentiment would be valid if the “new” technologies he is probably referring to were genuinely radical. The thing is, wind power and solar power, the two key technologies that have been causing an explosion in renewable energy, are tried and tested, so they are definitely not “new”; and also, there’s no significant failure that could reasonably be anticipated now.

What is it with BP and Renewable Energy ? Why the long faces ? It probably has to do with the BP Solar venture, that was properly amazing at the time, although it transpired that BP was making it all work with subsidies, which obviously is not sustainable, and there was strong competition from Chinese manufacture, so it was all closed down.

The real issue here could be said to have been market manipulation; but when the markets started functioning properly, over-subsidised, cost-inefficient technologies could no longer compete.

Market rigging doesn’t really work, except to kickstart technology adoption, and so it’s a bit of a mystery why BP still clings to carbon pricing as their preferred ask, “‘I cannot imagine how we’re going to get there without a price on carbon.'”

Now that wind power and solar power are within reach at increasingly reasonable capital expenditure levels, and many power companies increasingly depend on the cheap wind and solar electrons, why does Bob Dudley still maintain renewable energy technologies cannot be assets instead of liabilities, where for example, he said, “It does have a lower return profile, there’s no question about it.” ?

And further, he says he has been taunting shareholders with what he believes – that there is a lack of financial returns from renewables, “[…] they say ‘we would like you to move really quickly into renewables.’ I say, ‘we can do that, would you like us to cut the dividend?’ They go, ‘no, no, don’t do that.’

Bob Dudley seems to be making reference to an alternative reality, because this is not how things work in this current universe. Wind power and solar power are making real money, these days.

Also, Mr Dudley still seems unconvinced that renewable electricity technology is already viable, “‘Technology has not yet been cracked that will make the big movement on climate change. Renewables are fantastic. They’re one way to do it, but we’re going to come through with some solution.'”; and “‘Oil companies must […] invest when game-changing technologies are developed.'”

There’s no need to look to the future, though. All the technologies we need, we already have.

Bob Dudley seems to suffer from a lack of insight into what could be possible within BP’s current core business. “‘Oil companies must retain a strong financial footing to be able to invest when game-changing technologies are developed’, he said.” He is implying that BP must keep their social licence to pump crude petroleum oil and Natural Gas, in order to keep their balance sheet healthy enough to invest; yet the technologies he is thinking of have nothing to do with BP’s mining and refining activities. He mentions “some sort of nuclear capability that’s much safer”, by way of an example.

He’s also leaving this shift to the future – to things not yet known or done – leaving BP drilling fossil carbon for decades.

He neglects to address what could be possible in BP’s own house, with green chemistry, to bring about a massive reduction in net carbon dioxide emissions to air.

And about this social licence to drill : “‘If we understand where the technologies are going and we invest, the best thing we can do strategically is have a strong balance sheet. When it becomes really clear certain technologies are going to move very quickly and be profitable, then we’ll be able to make that shift.'” But, but, we can’t wait for BP to jump, when they think the market’s right to act on climate change. They do need to be acting right now.

So, not really inspiring, and rather disparaging.

But here’s where I agree with Bob, “‘We should not shut down what we’re doing or sell our assets to somebody else and go all into renewables'”, he is quoted as saying, and I totally agree. Why should BP try to do anything apart from what they’re really good at – chemical engineering ?

“‘We want to be leaders in this and we do enormous amount as companies’, such as in developing technology and reducing emissions from their own operations. But ‘we’re not the epicenter of these issues.'” Again, too right. BP is not the epicentre of solar power and wind power development, it’s not really their thing. Even so, they should be very central in the global response to climate change. Nobody should shrug.

And again, I agree with Bob when he says, “‘I don’t know how the world can get to the goals of [the] Paris [Treaty, agreed by UNFCCC] without a very major role for natural gas.'” No, indeed. Methane, the main constituent of Natural Gas, is a fine energy vector, and high flexible. It’s just that I think BP should be focussing on Renewable Methane, instead of Natural Gas, in future, and need a strategy to make that transition out of Natural Gas happen.

Bob Dudley thinks we should be resigned about the reign of King Oil, “‘If we were all driven out of business that oil would still be produced’ by national oil companies and other countries.”, which is a major abdication of responsiblity. Where is the compact between companies and countries to take up green chemistry, and elect to cease and desist from digging up fossil fuels ?

I think there is room for a breaking of paradigms. It might be too much to hope for a non-white person, or a woman, or even a person not wearing a suit and tie to be the new head of BP, but I have a vague idea there’s some traction in arguing for BP to return to their 1970s glory days of fuel synthesis.

The Inefficiency of Combustion

Every transformation of energy from one kind to another engenders ineffiency, through dissipation to the environment, and through divergence of forms from useful energy to unusable energy.

Critics of wind power and solar power like to point at their low conversion efficiencies, distracting our attention from fossil fuel technologies. Mario Hirz, of Graz University of Technology, answering the question “What is an efficiency of modern average car IC engines? That use petrol/gasoline/diesel”, writes that “Diesel engines up to 35% in best point, gasoline engine up to 30% in best point. In real life use, averaged about 25% for drivetrains with Diesel and about 20% for those with gasoline engines.”

Combustion, aka burning, or fuel oxidation, has two main problems in internal combustion engine (ICE) vehicles, like the average urban car; which are, that the fuel burning takes place as “free fire” in a reactor, where trillions of reactions take place randomly every microsecond, with no semblance of control or order; and in addition, the fuel used is messy, a jumble of hydrocarbons, oxygenates, and so on, with chemical modifications going on during the overall combustion process.

Would there be a way to improve on ICE designs to improve efficiency of combustion, for example, creating narrow channels with high flow for more uniform oxidation ? Or would using a purer fuel narrow the range of side reactions that lead to loss efficiency ?

In Nature, combustion is highly managed. Glucose isn’t burned with oxygen in the gut. No, respiration is done in each individual mitochondria structure inside each individual cell. In animals, oxidation is done cell by cell, in a highly controlled manner. Just the right amount of glucose and oxygen permeate the cell membrane to take part in the reactor organelles, and carbon dioxide and water waste products are efficiently routed out of the cell again (unless the cell decides it needs to hang on to some of the water : diffusion and osmosis).

In a car engine, we don’t have the luxury to compartmentalise combustion, despite things like vaporising fuel into minute droplets, and using catalytic mixers. And in point of fact, ICEs need the bulk explosion of centralised fuel burning in order to physically propel drive components. Combustion done differently is seen in fuel cell vehicles, where controlled oxidation is used to create electric current, which can be “concentrated” to the correct impulse to drive the car.

Could efficiencies of fuel use be improved at the same time as air quality and climate change are addressed in road/rail/sea/air vehicles and road/rail/sea/air vehicle fuels ?

The Renewable Gas Ask : Part Q

In the continuing inquiry into which bodies and actors are likely to call for Renewable Gas, and why, I am going back to add extra comments to sectors I already discussed.

14.   Power Grid Operators (Continued)

An Embarrassment of Electrons

Stories regularly bubble away, and rise to the surface from time to time, about how renewable power is being wasted, as grids don’t need it or can’t handle it.

There appears to be a whole phalanx of media commentators, who might identify as right-wing, and therefore be fans of shareholding and markets, who complain about wind turbines being “shut down” (or more accurately “shut out”) because it’s too windy. Funny, though, increasingly more wind turbines are being planted, almost as if there’s a strong return on capital investment in these zero carbon assets. Plus, these opinion-formers don’t seem to change their story from year to year, which is a tad strange :-

2018 : Wind farms paid ?100m to switch power off
2020 : “Wind farms paid up to ?3 million per day to switch off turbines”

It’s a losing argument, lads. Actually, no, it’s lost. The National Grid knew what it was doing when it agreed to adopt renewable electricity sources. There’s the whole Balancing Mechanism, and soon, there will be heaps of extra electricity storage, and the storage of the power of electrons in other forms of energy.

As time goes by, and reams of solar panels and crowds of wind turbines are added to the standing army of power grids in the developed and developing countries, because neighbouring countries will all be producing too much electricity at the same time – for example in a strong storm system or a very sunny day – it will not be possible to export electrons along interconnectors.

Oops, an embarrassment of electrons. The infrastructure and grid distribution people will be looking for anything that can act as a load sink. Sure, for an anticipated storage time of a few hours, using grid-integrated solid state batteries are going to be a boon. Except the scale of the energy storage required might far outweigh original scoping.

Will the power companies turn to flow batteries and other kinds of chemical looping systems for energy storage on windy Wednesdays and sunny Sundays ? It all depends on how stable these turn out to be – how many cycles of a unit can be done before maintenance or chemical refilling is required. Also, the containment of chemical batteries is a fairly major construction cost, and for safety reasons, it might be better if they were built into the ground – also saving on build materials. If the power companies need to go to the extent of digging for battery provision, why not produce synthetic gas from excess renewable power, and store that underground instead ? It would require much less in terms of containment and build. Nature has provided a fine example of how gases can be stored safely for millions of years underground – why, we could even use the now-emptied Natural Gas caverns to store synthesised methane.

It is at this point in the logic that a wise reviewer of energy will reflect on how there is now a bit of a competition for the provision of sub-surface storage of gases. Large, traditionally leading oil and gas companies are selling the idea of CCS – Carbon Capture and Storage, where all vagrant carbon dioxide should be plucked from whichever process, or even from the air itself, to be compressed and pumped underground for eternity – but actually a good deal shorter, because of tectonics and the natural long period natural Carbon Cycle. Modern, more conscious energy companies want to use the sub-surface to store carbon-free hydrogen, despite the fact that hydrogen molecules are incredibly small and incorrigibly mobile, seeping through even metals.

Whilst it is true that the world needs Renewable Hydrogen – hydrogen liberated from water and biomass by the action of renewable power – the best gas for energy storage is definitely Renewable Methane – made from Renewable Hydrogen. There is a strong parallel with natural processes : Natural Gas, which has been resident in the sub-surface for millions of years, is primarily methane in content.

Fine. Capture and lock away a bit of carbon dioxide underground. Bury CO2. But there is no gain in locking away a source of carbon that has no intrinsic fuel value. What’s more important is energy storage – so temporarily burying hydrogen and methane – which are ideal fuels. Although, as previously noted, methane is more stable and containable, theoretically. Methane gas emissions from oil and gas industry operations have been bad in some places and at some times : due to liberating methane from its millions-years sub-surface storage : this failing will need to be deal with when applications of Renewable Methane expand.

10.   Industrial High Energy Consumers (Continued)

Developed and developing economies will continue to have industries with high levels of energy demand, causing high levels of carbon dioxide emissions : for products such as steel, glass, fuels, petrochemicals and cement. Processes in this sector are highly concentrated in terms of location, owing to the energy efficiency of highly centralised operation, and this would facilitate high volume carbon dioxide capture, and therefore lower-cost CCS – the underground, permanent sequestration of carbon dioxide.

However, in terms of capital expenditure barriers to new technologies, it would be less of a hurdle to implement low carbon synthetic gas production to meet energy demand; and in addition, provide energy-dense synthesised gases for storage which would have a future earnings potential. If syngas in high energy demand industries were to be made from renewable resources, so Renewable Gas, so Renewable Hydrogen, Renewable Methane and Renewable Carbon Monoxide, this would advance low carbon industry significantly.

Another question is that of speed-to-implementation : Renewable Gas for low carbon energy in energy-intensive industries is likely to be much faster to get going than industry-wide Carbon Capture and Storage.

In order for Renewable Gas to be called for in this sector, however, there would need to be a strong confidence that renewable electricity supplies were growing virtually exponentially, as cheap power will be essential. Renewable Gas will not only be a serious soak of excess renewable power load, it will also provide a way to capture and recycle process heat in energy-intensive industries – a matter of energy efficiency, which is highly important to make advances in.

The Renewable Gas Ask : Part P

I am still adding extra ideas into points I previously laid out regarding who is likely to call for the development of Renewable Gas.

9.   Other International Agencies, such as IEA Bioenergy and Governments (Continued)

The Renewable Energy Directive II (RED II) in the European Union, and the Renewable Fuel Standard (RFS) in the United States of America set regulatory ambitions for the increase of renewable fuels, either as pure streams, or in blends.

There are a number of reasons why the percentages of renewable fuels in blends are relatively low compared to ambition in other areas, such as for the percentage of low carbon electricity generated.

One reason is that it is thought that supplies of renewable fuels, or renewable components of fuel blends, might be limited in quantity – specifying high percentages in targets for road fuels could lead to scarcity and rule-breaking.

Another issue of concern is that producing renewable fuels might well compete with the food supply for the use of land or crops. This “food versus fuel” struggle is typified by the competition for maize corn stocks (which is destined either for bioethanol or cattle feed) and the land to grow it.

A third deliberation is found where fuel plant species are supplanting native tropical rainforest or woodland : the net carbon emissions from deforestation cannot be compensated for by the raising of oil palms, for example, in Indonesia and Malaysia (which the forests were originally razed to raise).

As a general finding, the more a technology is deployed, the more evolved it is, and the more efficient and cheap it is : low renewable fuels ambitions could be said to be stalling cost-effectiveness and efficiency in producing renewable fuels – a negative feedback.

If volume growth continues to be depressed, there could come a point where regulatory targets cannot be met. If this arrives, then a new approach might be necessary.

So far, renewable fuels have been considered to be solely those produced from grown biomass – so by the thermal and biological decomposition and reformation of lipids and (poly)saccharides in photosynthesising plants and certain members of the non-plant-non-animal clades of the tree of life.

To increase volumes, we could make the biomass box itself larger, by broadening our understanding of what can be grown to become usable carbonaceous material : plasmodium-phase slime mold biodiesel, anyone ?

Yet, the more we start to look outside this biological box for sources of carbon to make into fuels (with the addition of the hydrogen from water, and the oxygen from the air), via synthesis, the larger the potential source of renewable fuels could be.

Why, we can fish carbon out of such things as : the carbon dioxide that’s normally a waste product of biogas production, carbon dioxide from the cement industry, waste wood by-products from forestry and maybe even young muds from tidal estuaries – ploughed out through dredging shipping channels.

There are a variety of ways that carbon can be cycled into making renewable fuels, including DAC – Direct Air Capture, if this becomes efficient.

It seems likely that if biomass-sourced biologically-produced renewable fuels have a maximum limit to their volumes, then governments and international agencies will put out the call for synthetic renewable fuels, such as the gases Renewable Methane and Renewable Hydrogen.

BP : Boiling Point

I wonder just what was said at this meeting.

“Oil CEOs at Davos debate tougher CO2 cuts as pressure mounts […] Jan. 22, 2020 […] The bosses of some of the world’s biggest oil companies discussed adopting much more ambitious carbon targets at a closed-door meeting in Davos, a sign of how much pressure they’re under from activists and investors to address climate change. The meeting, part of a World Economic Forum dominated by climate issues, included a debate on widening the industry’s target to include reductions in emissions from the fuels they sell, not just the greenhouse gases produced by their own operations, people familiar with the matter said on Wednesday. The talks between the chief executive officers of companies including Royal Dutch Shell Plc, Chevron Corp., Total SA, Saudi Aramco, Equinor ASA and BP Plc showed broad agreement on the need to move toward this broader definition, known as Scope 3, the people said, asking not to be named because the session was closed to the press. The executives didn’t take any final decisions. […]”

So what are Scope 3 emissions ? For the full outline of what this means, it is necessary to refer to the GHG Protocol behind the term.

For many years, companies like BP and Shell have resisted taking responsibility for the environmental and social disbenefits of their products. From despoilation of the natural world, to oppression of peoples, to the links to military conflicts, to climate change caused by the global warming emissions of their fuels, they have failed to respond to criticism, even when fined or reported upon.

Climate change in particular, has been treated as SEP – somebody else’s problem. Governments and blocs should insititute and enforce carbon pricing, according to economists at BP and Shell. If the world wants to control carbon dioxide emissions, argue the oil and gas companies, taxes should subsidise the application of Carbon Capture and Storage – locking CO2 back in the ground.

The most annoying argument is that energy consumers are responsible for climate change, by continuing to buy climate-busting fuels; it’s not the fault of the oil and gas companies, is it ? “Guns don’t kill people, people do” is the same argument used in the rabid American gun lobby context : offloading blame for access to military grade weaponry by the general population, and not admitting it is a problem that it is for sale in out-of-town hypermarkets. If inappropriate transport fuels were not for sale, people wouldn’t buy them.

Of the two, (BP and Shell), Shell, at least, is breaking somewhat with the mantra, and has clear ambitions to lower the net carbon dioxide emissions of its products – although the global initiative to curb methane emissions they are a part of is not so hot on performance.

It will interesting to see just what BP thinks will amount to taking control of their energy product emissions. With a new CEO, there are already rumours of a bit of shake up, and although I’m a bit “watch this space” blasé/blah about it, I am genuinely interested to see what emerges.

So often in the past, announcements from BP have resulted in meh moments; no cause for optimism or congratulations. I would genuinely like to be in a position to applaud what BP decides to do. After all, we can’t keep harping on about historical crimes and blame : we do need to make inroads into a sustainable future.

Too often, in the past, BP has said they’re so over petroleum, and then spent a few pennies (relatively) on a bit of alternative energy, renewable electricity or advanced biofuels, and then backed out, greenwashing their public relations over as they do so.

Let’s hope this new renewable energy enthusiasm extends beyond a paint job.

Energy Union Trumps Brexit

Brexit is, to put it mildly, unhelpful. Being less generous, it is entirely possible that the United Kingdom’s withdrawal from marketplace and social union with the rest of Europe could lead to an outpouring of disasters.

That’s not “doomer talk”, that’s the esteemed analysis of a range of professional bodies, banks, manufacturers, charities and almost anybody who has drawn up some reasonable figures on the matter.

That the government of a country would carry on regardless, and choose to walk away from a package of working, yes you read that right, working, carefully-crafted socioeconomic treaties and a special relationship with their closest trading partner bloc, on the basis of a poorly-conducted advisory referendum, subject to allegedly illegal foreign campaign funding, where votes were apparently garnered through the deployment of fake narratives, and voters were reported as unaware of what they were voting for, and populism and xenophobia have been rife, is tantamount to a mistake of historical proportions.

The bonfire of citizen rights, in itself, is a monumental and destructive mis-step; and could well lead to incredible social instability.

And so the UK Government renders itself inconsequential on the global stage, and all its players in the (let’s mix up these animal metaphors) braying, snorting Parliamentary majority mere silly, strutting peacocks (and hens).

Added to which, this meaningless spasm of some-might-say deliberate chaos could lead to the break-up of the 300 year old British union. Top marks to the “one nation” Conservatives, heading up this nightmare carnival of ridicule.

Brexit is not a thing. It is non-governance. It is a distraction from real politics. The proper function of government is to home the homeless, feed the hungry and to lift the humble high. Parliamentary time shouldn’t be wasted on ideological vanity projects.

Brexit isn’t a policy, it’s a shakedown. And we all get to suffer. It’s not going to lead to the cutting of red tape, that holy grail of small state neoliberal conservatism. It’s not going to shrink any budgets. It’s not going to lead to increased sovereignty, or taking back of any kind of control, just take us all back to the highly convoluted public sector administration and private sector corruption of the 1970s, or worse. Brexit has already eaten up 95% of all political bandwidth of the last 3 years, with no tangible benefits, either now, or in the future.

Brexit is backwards.

Something that doesn’t feature much in the scandal-and-outrage media is that of discussion about what could happen to energy supply as a result of this (let’s be very plain) self-destructive constitutional manoeuvre. There is scope for a plethora of knock-on impacts from Brexit that dwarf worries about the survival of financial services in London, and car manufacturing everywhere else in the UK.

The European Union is on the threshold of a major step in Energy Change, and barring an incredibly co-operative and significant level of negotiation, the exiting United Kingdom is going to lose out : lose out on technology investment, lose out on energy market access, and lose out on economic stimulus.

The renewable electricity phenomemon has clambered far higher than expectations, and now the Energy Union of the EU is going to experience a second and third wave of renewable energies: these being in gas and liquid transport fuels.

If the so-called “leadership” of the UK Government has any sense, or in fact, capacity to lead, left in its lightweight core, it would have access to the EU energy markets as one of its top, top negotiating points.

Because, whatever else happens, for the business of energy, the UK must remain physically attached to the EU, and hence be obliged to play in the Energy Union game. Our exports and imports of energy will need to continue to conform to the standards and climate change regulations of the European Union, even if exports and imports of cheeses, wines and sausages suffer from divergence.

The UK is highly dependent on the energy interconnections and port trades with the EU. We simply cannot afford to sever cables, cap pipelines, turn away cargo. This means we have to meet in the middle on energy standards, or rather, meet at the EU end on regulation and legislation as to what comes next.

There will be Renewable Gas, and Renewable Fuels, and the climate change demands on transition in energy will be inescapable. The UK will have to play ball on climate change and Energy Change, as an indelible part of the Energy Union fabric. There’s no point-scoring possible on claiming otherwise. By rescinding influence at the level of membership of the EU, the UK will need to take the instructions it is given on energy.

And so Brexit subjugates the UK, to become slave, vassal to the EU’s Energy Package. No sovereignty gained, there. No representation in the European Parliament, European Commission and European Council equates to no influence, no power of intervention in the debates on legislation, no participation in the drafting of policy. The UK becomes irrelevant. Is that what the people really willed ?

We are already being wiped from the energy maps in EU energy consultancy reports, but the UK must continue to join in if it is to trade in energy.

The Energy Union must go on !

The Renewable Gas Ask : Part O

16.   Gas Network Operators

Water, gas and power are considered essentials in developed society, and the responsibility for providing a constant supply rests with a range of public utilities and private concerns. What might not be visible at a first glance is the necessity for there to be overarching distribution organisations. Most consumers of water, gas and power only see the bills from their supply companies, they don’t see the grids and pipeline networks that act as infrastructure to communicate their supplies to their doors; nor envisage how coordinated and managed these need to be in order to keep the whole system functioning.

And thus it is that there are giant companies and government agencies that are forever working behind the market scenes, installing, repairing, connecting, transforming, regulating, pumping, pressurising, smoothing and balancing the supplies of water, gas and power.

It is these powerful and very well connected groups that may be a powerful voice for the introduction of Renewable Gas, as they have several good reasons to call for it.

First of all, because of potential vagaries and vaguenesses, and perhaps even international vandalism, the supply of Natural Gas, for example to the European region, which is heavily dependent on imports, might be at risk under some possible future conditions – temporal or temporary. This naturally mandates healthy grid-connected gas storage facilities. It is important to note that the storage of energy fuel gases is of an importance a magnitude higher than the storage of waste non-fuel carbon dioxide to these actors in the energy sector. We all know that climate change is a scourge that needs addressing, but if Vladimir Putin’s generals or buddies turn the taps off, the resulting energy emergency in Europe can only be answered by planning ahead of time to have stores of energy-dense gas on hand. Yes, we need to deal with climate change, but first, we need underground gas storage. Then we can decarbonise the gas.

Second, but no less important, is making sure that gas fuels can adequately and at all times compensate for the natural variability in renewable electricity supply – because, you know, the sun sets, and the wind dies down from time to time. Natural Gas is turning into a very good friend for filling in the gaps in generation, and so builds the case for gas storage. The electricity grid people want the smoothing done by gas, partly because it produces so much less in carbon dioxide emissions that coal, so there has to be a strong cooperation between the gas and power authorities and management. Yes, this is not Renewable Gas going into these stores, but see what happens in point three.

Thirdly, as the growth in renewable electricity “rockets”, and other shock terms to indicate exponential change, there will be times when the combination of the sun and wind power is just too copious – hours of excess energy just streaming into the wires. There is no way that every country in Europe can export all their excess electricity – the wires are full of whizzing wind (or solar) electrons from County Kerry to Pchery in the Czech Republic. What to do with all this excess electricity ? Why, make Renewable Gas of course, to store for future hungry gaps. All the more reason to build gas storage.

And so now you see where this is heading : the administration of the gas infrastructure deeply need gas storage, and the power companies can provide lots of perhaps close to zero cost electrons to make gas from water.

The call for “power-to-gas” or P2G is getting louder – making Renewable Hydrogen – but for a range of reasons, the best gas to store is probably Renewable Methane, so it will pay to watch closely for the details of progress.

Here’s Gasunie reporting a European grant for P2G, and their studies into the same

The Renewable Gas Ask : Part N

11. The Fossil Oil and Gas Producers (Continued)

So what would the implementation of Renewable Gas look like for a company like BP ?

It would be a transition happening on a number of fronts, as a result of a range of stressors.

Three trends are likely to continue in the chemistry of crude petroleum oil : where oils and their associated Natural Gas Liquids are being sourced from unconventional tight or shale formations, or from good quality newly-discovered conventional petroleum systems, the chemistry will be light, with valuable shorter-carbon-chain hydrocarbons – although there may be a high level of gaseous sulfur compounds incorporated in what’s extracted at the pumps in the field. The second trend will be where unconventional heavy oils, and older, depleting conventional heavy oils will continue to be produced, despite overly-heavy longer-carbon-chain hydrocarbons being the majority of the crude material, and there being a great burden from sulfur compounds – some very complex – and therefore in a liquid, rather than a gas, state. The third trend will be the increasing amount of sulfur compounds in some of the lighter oil stream and most of the heavy oil flow.

The two general streams of oils will need to be treated in different ways in refinery, and their eventual target products will also be different : lighter oils and gases will be used for blending into petrol-gasoline and for supplying the gas industry – where lighter hydrocarbons are either incorporated into Natural Gas supplies, such as the LNG supply chain; or bottled into cannisters for various applications, such as LPG fuel, propane fuel and so on. The heavy stream will be used for making diesel, air fuel and other distillates, gas oils and bunker fuels.

As the light oils get lighter, there will be more light hydrocarbons to deal with. This group includes methane and ethane. Most of the methane can easily be transposed into applications that would use Natural Gas, and some of the ethane, too; but what to do with the rest. There is a global industry developing around new supplies of ethane, for example, the fabrication of polymers – all the plastics we use.

What’s wrong with this picture ? Well, to start with, methane and ethane are gases. That means they are not liquids, which means they cannot easily be used to produce liquid vehicle fuels, without re-forming or reforming the gases to make synthetic molecules with higher boiling points, so liquid. To synthesise liquid hydrocarbon fuels from hydrocarbon gases requires the additional use of energy, water and oxygen, which can be extracted from the air. Because an increasing fraction of the lighter oils is going to be gas, there will be a gas glut. The price of a range of hydrocarbon gases will stay low, and may even decrease. There will arise the question of how to increase the value of this surfeit of gases, and the answer will be twofold : make synthetic liquid fuels, and make hydrogen.

Ah, hydrogen. Why will hydrogen have so much value ? Because it can be used in a range of petrorefinery processing of the heavier oils.

As heavier oils get heavier, they will require increasing amounts of processing to make market-ready liquid fuels. One of the issues is the rising levels of sulfur compounds in the crude oil. As environmental standards in refinery have improved, increasingly, hydrogen has become the cure to a number of problems in purifying and reforming heavy hydrocarbon molecules. But hydrogen can be sourced from Natural Gas and the range of lighter, gaseous hydrocarbons coming from oil production.

Again, it looks like it all adds up, but there are a fistful of catches. You may have noticed that there is now a competition : those that process lighter oils will want to use the gaseous byproducts for synthesising liquid fuels, in order to maximise their value. Whilst those wanting to process heavier oils will want that same “refinery gas” to make hydrogen for all their hydrotreating, hydroprocessing, hydrodesulfurisation and so on.

Added to which, the supply of lighter oils might suddenly cease from a particular field or region, owing to economic imbalance, or rapid depletion after a wind-down in new drilling.

With the international regulations on sulfur adding a vice-like grip on the quality of heavier oil products, the petrorefiners could find themselves in a tight corner. They need hydrogen, but they don’t have any. Where can they get some ? Using wind, sun and water.

The sulfur in all the oils of the next several decades is going to become a slag heap of embarrassment. The yellow mountains of crystallised sulfur will just sit there, gradually oxidising and continuing to poison the atmosphere. Or burning, perhaps through military action, and creating toxic clouds and fallout everywhere remotely within range of the weather systems.

So I think the first signs that BP are taking Renewable Gas baby steps will be twofold : first of all, they will start buying or deploying renewable electricity assets. Why ? To have their own source of power for electrolysis of water, to make hydrogen for their refineries. The second step I think you’ll find will be that BP, like Shell, start to synthesise fuels.

One day, no liquid hydrocarbons will be mined from the ground : they will all be synthesised from renewable electricity, water, air and biomass.